Experimental Investigation of Isolated Roughness Induced Transition in a Swept Wing Boundary Layer

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

107 Downloads (Pure)


The application of an isolated roughness element in the laminar boundary layer developing on the surface of a wing, introduces flow instabilities that eventually lead to the breakdown of the laminar flow structures and the formation of a turbulent wedge. The present work, investigates the instabilities and transition process initiated by an isolated roughness element applied in a swept wing boundary layer. Specifically, the perturbations induced by a cylindrical element are analysed, providing relevant insights regarding the nature of the instabilities developing in the flow field. The global flow features are measured through infrared thermography, while local information on the stationary and unsteady disturbances are provided by hot-wire anemometry. The collected results, prove that the main instabilities responsible for the wedge origin and evolution are related to the shedding process initiated in the wake of the roughness element. Additionally, the dominant flow features identified in the present work, show significant similarities with those pertaining to 2D boundary layer transition initiated by isolated roughness elements.
Original languageEnglish
Title of host publicationAIAA SCITECH 2022 Forum
Number of pages11
ISBN (Electronic)978-1-62410-631-6
Publication statusPublished - 2022
EventAIAA SCITECH 2022 Forum - virtual event
Duration: 3 Jan 20227 Jan 2022

Publication series

NameAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022


ConferenceAIAA SCITECH 2022 Forum


Dive into the research topics of 'Experimental Investigation of Isolated Roughness Induced Transition in a Swept Wing Boundary Layer'. Together they form a unique fingerprint.

Cite this