TY - JOUR
T1 - Experimental Investigation of Rubber Swelling in Bitumen
AU - Wang, Haopeng
AU - Liu, Xueyan
AU - Apostolidis, Panos
AU - Erkens, Sandra
AU - Skarpas, Athanasios
N1 - Accepted Author Manuscript
PY - 2020
Y1 - 2020
N2 - Rubber swelling in bitumen, which is a diffusion-induced volume expansion process, plays a dominant role in the design of crumb rubber modified bitumen binders and their properties development. This study aims to investigate the kinetics of bitumen diffusion into truck tire rubber, the equilibrium swelling characteristics of rubber, and the mechanical properties of rubber before and after swelling at different high temperatures. Fourier transform infrared spectroscopy results indicate that no rubber dissolution happens during the interaction in the temperature range from 160°C to 200°C. Aliphatic compounds from bitumen preferentially diffused into rubber during the swelling process. The diffusion coefficients of bitumen into rubber were determined by the sorption test using the gravimetric method. The diffusion coefficient increases with the increase of temperature in an Arrhenius form. The volume expansion of rubber during swelling was captured by the X-ray computed tomography scan images. Rubber swells faster at the earlier stages, then the expansion rate slows down. The swelling ratio of rubber increased from 1.97 at 160°C to 3.03 at 200°C after 36 h interaction. Mechanical tests by dynamic shear rheometer reveal that swollen rubber becomes softer compared with the dry rubber and exhibits obvious viscoelastic behaviors. With the increase of temperature, the softening and viscous effect are more significant. The obtained parameters can be implemented to swelling and micromechanical models to better predict the binder properties.
AB - Rubber swelling in bitumen, which is a diffusion-induced volume expansion process, plays a dominant role in the design of crumb rubber modified bitumen binders and their properties development. This study aims to investigate the kinetics of bitumen diffusion into truck tire rubber, the equilibrium swelling characteristics of rubber, and the mechanical properties of rubber before and after swelling at different high temperatures. Fourier transform infrared spectroscopy results indicate that no rubber dissolution happens during the interaction in the temperature range from 160°C to 200°C. Aliphatic compounds from bitumen preferentially diffused into rubber during the swelling process. The diffusion coefficients of bitumen into rubber were determined by the sorption test using the gravimetric method. The diffusion coefficient increases with the increase of temperature in an Arrhenius form. The volume expansion of rubber during swelling was captured by the X-ray computed tomography scan images. Rubber swells faster at the earlier stages, then the expansion rate slows down. The swelling ratio of rubber increased from 1.97 at 160°C to 3.03 at 200°C after 36 h interaction. Mechanical tests by dynamic shear rheometer reveal that swollen rubber becomes softer compared with the dry rubber and exhibits obvious viscoelastic behaviors. With the increase of temperature, the softening and viscous effect are more significant. The obtained parameters can be implemented to swelling and micromechanical models to better predict the binder properties.
UR - http://www.scopus.com/inward/record.url?scp=85085974130&partnerID=8YFLogxK
U2 - 10.1177/0361198120906423
DO - 10.1177/0361198120906423
M3 - Article
AN - SCOPUS:85085974130
SN - 0361-1981
VL - 2674
SP - 203
EP - 212
JO - Transportation Research Record
JF - Transportation Research Record
IS - 2
ER -