TY - JOUR
T1 - Experimental investigation of the performance of a hybrid self-healing system in porous asphalt under fatigue loadings
AU - Xu, Shi
AU - Liu, Xueyan
AU - Tabakovic, Amir
AU - Schlangen, Erik
PY - 2021
Y1 - 2021
N2 - Self-healing asphalt, which is designed to achieve autonomic damage repair in asphalt pavement, offers a great life-extension prospect and therefore not only reduces pavement maintenance costs but also saves energy and reduces CO2 emissions. The combined asphalt self-healing system, incorporating both encapsulated rejuvenator and induction heating, can heal cracks with melted binder and aged binder rejuvenation, and the synergistic effect of the two technologies shows significant advantages in healing efficiency over the single self-healing method. This study explores the fatigue life extension prospect of the combined healing system in porous asphalt. To this aim, porous asphalt (PA) test specimens with various healing systems were prepared, including: (i) the capsule healing system, (ii) the induction healing system, (iii) the combined healing system and (iv) a reference system (without extrinsic healing). The fatigue properties of the PA samples were characterized by an indirect tensile fatigue test and a four-point bending fatigue test. Additionally, a 24-h rest period was designed to activate the built-in self-healing system(s) in the PA. Finally, a damaging and healing programme was employed to evaluate the fatigue damage healing efficiency of these systems. The results indicate that all these self-healing systems can extend the fatigue life of porous asphalt, while in the combined healing system, the gradual healing effect of the released rejuvenator from the capsules may contribute to a better induction healing effect in the damaging and healing cycles.
AB - Self-healing asphalt, which is designed to achieve autonomic damage repair in asphalt pavement, offers a great life-extension prospect and therefore not only reduces pavement maintenance costs but also saves energy and reduces CO2 emissions. The combined asphalt self-healing system, incorporating both encapsulated rejuvenator and induction heating, can heal cracks with melted binder and aged binder rejuvenation, and the synergistic effect of the two technologies shows significant advantages in healing efficiency over the single self-healing method. This study explores the fatigue life extension prospect of the combined healing system in porous asphalt. To this aim, porous asphalt (PA) test specimens with various healing systems were prepared, including: (i) the capsule healing system, (ii) the induction healing system, (iii) the combined healing system and (iv) a reference system (without extrinsic healing). The fatigue properties of the PA samples were characterized by an indirect tensile fatigue test and a four-point bending fatigue test. Additionally, a 24-h rest period was designed to activate the built-in self-healing system(s) in the PA. Finally, a damaging and healing programme was employed to evaluate the fatigue damage healing efficiency of these systems. The results indicate that all these self-healing systems can extend the fatigue life of porous asphalt, while in the combined healing system, the gradual healing effect of the released rejuvenator from the capsules may contribute to a better induction healing effect in the damaging and healing cycles.
KW - Calcium alginate capsules
KW - Combined healing system
KW - Fatigue life
KW - Induction heating
KW - Self-healing asphalt
UR - http://www.scopus.com/inward/record.url?scp=85109016409&partnerID=8YFLogxK
U2 - 10.3390/ma14123415
DO - 10.3390/ma14123415
M3 - Article
AN - SCOPUS:85109016409
SN - 1996-1944
VL - 14
SP - 1
EP - 19
JO - Materials
JF - Materials
IS - 12
M1 - 3415
ER -