Experimental investigation of wave interaction with a thin floating sheet

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

5 Citations (Scopus)


Flexible floating structures received increasing attention in recent years as support structures for floating offshore solar installations and other forms of oceans space utilization. An early example for such structures was the Mega-Float structure proposed as floating airport runway for Tokyo Bay. More recent examples can be found in the large inland floating solar parks where interconnected pontoons form a flexible floating structure. The common denominator of these structures is their small height compared to their length and width resulting in low bending stiffness in the vertical direction. Structural length being much longer than the wavelength and low bending stiffness result in large vertical deflections of the floating structures and strong hydroelastic interaction with the waves. Similar behavior can be observed for sloshing mitigation measures with flexible membranes. In this study, we investigated the wave structure interaction of a floating flexible sheet with a length to height ratio of 1000 in regular long-crested head waves in the small towing tank of Delft University of Technology. Wavelength was varied between 1/20 and 1/5 of structure length with wave steepness in the range of 0.02 to 0.05. Digital Image Correlation (DIC) was used to measure the surface elevation of the entire structure and wave elevation was measured in three different locations to provide reference data. The results show that the floating sheet mainly followed the local wave elevation and a reduction of motion amplitude was observed over the length of the structure. Further, the results reveal 3D effects of different elevation amplitude across the width of the sheet, which suggests strong interaction with the waves.

Original languageEnglish
Title of host publicationProceedings of the 30th International Ocean and Polar Engineering Conference
PublisherInternational Society of Offshore and Polar Engineers (ISOPE)
ISBN (Electronic)978-1-880653-84-5
Publication statusPublished - 2020
Event30th International Ocean and Polar Engineering Conference, ISOPE 2020 - Virtual, Online
Duration: 11 Oct 202016 Oct 2020

Publication series

NameProceedings of the International Offshore and Polar Engineering Conference
ISSN (Print)1098-6189
ISSN (Electronic)1555-1792


Conference30th International Ocean and Polar Engineering Conference, ISOPE 2020
CityVirtual, Online


  • Digital Image Correlation
  • Floating elastic sheet
  • Fluid Structure Interaction
  • Hydroelasticity
  • Wave scattering


Dive into the research topics of 'Experimental investigation of wave interaction with a thin floating sheet'. Together they form a unique fingerprint.

Cite this