Experimental investigation on the effect of the duct geometrical parameters on the performance of a ducted wind turbine

Juan Tang, F. Avallone, R. Bontempo, G. J.W. Van Bussel, M. Manna

Research output: Contribution to journalConference articleScientificpeer-review

18 Citations (Scopus)
104 Downloads (Pure)


This paper reports an experimental investigation on the effect of the duct geometry on the aerodynamic performance of an aerofoil shaped ducted wind turbine (DWT). The tested two-dimensional model is composed of an aerofoil equipped with pressure taps and a uniform porous screen. The experimental setup is based on the assumption that the duct flow is axisymmetric and the rotor can be simulated as an actuator disc. Firstly, different tip clearances between the screen and the aerofoil are tested to point out the influence of this parameter on the DWT performance in terms of aerofoil pressure distribution, aerofoil lift and flow field features at the duct exit area. Then, the combined effect of tip clearance, of the angle of attack and of the screen position along the aerofoil chord is evaluated through a Design of Experiments (DoE) based approach. The analysis shows that, among the analysed range of design factor variation, increasing angle of attack and the tip clearance leads to a beneficial effect on the lift and back-pressure coefficients, while they show a poor dependence upon the screen axial position. Finally, the configuration characterized by the maximum value of all three main factors (15 degree of angle of attack, 5% of tip clearance and 30% backward to the nozzle plane), has the best values of lift coefficient and back-pressure coefficient.

Original languageEnglish
Article number022034
Number of pages13
JournalJournal of Physics: Conference Series
Issue number2
Publication statusPublished - 19 Jun 2018
EventTORQUE 2018: The Science of Making Torque from Wind - Milano, Italy
Duration: 20 Jun 201822 Jun 2018


Dive into the research topics of 'Experimental investigation on the effect of the duct geometrical parameters on the performance of a ducted wind turbine'. Together they form a unique fingerprint.

Cite this