Explicit non-Markovian susceptible-infected-susceptible mean-field epidemic threshold for Weibull and Gamma infections but Poisson curings

Piet Van Mieghem, Qiang Liu

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)

Abstract

Although non-Markovian processes are considerably more complicated to analyze, real-world epidemics are likely non-Markovian, because the infection time is not always exponentially distributed. Here, we present analytic expressions of the epidemic threshold in a Weibull and a Gamma SIS epidemic on any network, where the infection time is Weibull, respectively, Gamma, but the recovery time is exponential. The theory is compared with precise simulations. The mean-field non-Markovian epidemic thresholds, both for a Weibull and Gamma infection time, are physically similar and interpreted via the occurrence time of an infection during a healthy period of each node in the graph. Our theory couples the type of a viral item, specified by a shape parameter of the Weibull or Gamma distribution, to its corresponding network-wide endemic spreading power, which is specified by the mean-field non-Markovian epidemic threshold in any network.
Original languageEnglish
Article number022317
Pages (from-to)022317-1 - 022317-15
Number of pages15
JournalPhysical Review E
Volume100
Issue number2
DOIs
Publication statusPublished - 2019

Fingerprint

Dive into the research topics of 'Explicit non-Markovian susceptible-infected-susceptible mean-field epidemic threshold for Weibull and Gamma infections but Poisson curings'. Together they form a unique fingerprint.
  • Spreading on Networks

    Liu, Q., 2019, Delft. 142 p.

    Research output: ThesisDissertation (TU Delft)

    Open Access
    File
    99 Downloads (Pure)

Cite this