Exploiting activation radiation from neutron tomography reveals the hidden elemental composition of 3D art objects for free

Yueer Li*, Sara Creange, Zhou Zhou, William Southworth, Arie Pappot, Lambert van Eijck

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

17 Downloads (Pure)

Abstract

Neutron tomography is gaining popularity particularly in cultural heritage research, for non-destructively analysing the inner structure of bulk metal artefacts, such as bronzes, but the induced temporary decay radiation is often considered as a drawback. However, this delayed gamma-emission can be put to good use: by performing gamma spectroscopy after neutron tomography, the interior elemental composition of artefacts can be obtained “for free”. Inspired by this, we propose a ray-tracing approach to non-invasively quantify both interior geometry and elemental composition using only a single neutron tomography experiment. This strategy aligns well with both the aim for efficient use of neutron beam time and the expectation from curators and conservators for minimal neutron irradiation. Here, we outline the core principle of this method, demonstrate the extent of its quantification capability on bulk objects of known composition by fusing neutron tomography and delayed-gamma spectroscopy data sets. We also showcase its practical application on an ancient solid-cast Indonesian bronze statuette, by which we gain insights into how the pristine inner bronze segregated into a different composition than the surrounding shell. Similarly, the method allows us to quantify the composition of a hidden offering in the statuette that consecrates the bronze for worship purposes.

Original languageEnglish
Article number28982
Number of pages11
JournalScientific Reports
Volume14
Issue number1
DOIs
Publication statusPublished - 2024

Keywords

  • Bronze
  • Cultural heritage
  • Gamma spectroscopy
  • Imaging
  • Neutron activation
  • Non-destructive
  • Quantification

Fingerprint

Dive into the research topics of 'Exploiting activation radiation from neutron tomography reveals the hidden elemental composition of 3D art objects for free'. Together they form a unique fingerprint.

Cite this