Exploiting linkage information in real-valued optimization with the real-valued gene-pool optimal mixing evolutionary algorithm

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

31 Citations (Scopus)

Abstract

The recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) has been shown to be among the state-of-the-art for solving discrete optimization problems. Key to the success of GOMEA is its ability to efficiently exploit the linkage structure of a problem. Here, we introduce the Real-Valued GOMEA (RV-GOMEA), which incorporates several aspects of the real-valued EDA known as AMaLGaM into GOMEA in order to make GOMEA well-suited for real-valued optimization. The key strength of GOMEA to competently exploit linkage structure is effectively preserved in RV-GOMEA, enabling excellent performance on problems that exhibit a linkage structure that is to some degree decomposable. Moreover, the main variation operator of GOMEA enables substantial improvements in performance if the problem allows for partial evaluations, which may be very well possible in many real-world applications. Comparisons of performance with state-of-the-art algorithms such as CMA-ES and AMaLGaM on a set of well-known benchmark problems show that RV-GOMEA achieves comparable, excellent scalability in case of black-box optimization. Moreover, RV-GOMEA achieves unprecedented scalability on problems that allow for partial evaluations, reaching near-optimal solutions for problems with up to millions of real-valued variables within one hour on a normal desktop computer.
Original languageEnglish
Title of host publicationGECCO 2017 - Proceedings of the 2017 Genetic and Evolutionary Computation Conference
Pages705-712
Number of pages8
DOIs
Publication statusPublished - 1 Jul 2017
EventGECCO 2017: Genetic and Evolutionary Computation Conference - Berlin, Germany
Duration: 15 Jul 201719 Jul 2017
http://gecco-2017.sigevo.org/index.html/HomePage

Conference

ConferenceGECCO 2017
Country/TerritoryGermany
CityBerlin
Period15/07/1719/07/17
OtherA Recombination of the 26th International Conference on Genetic Algorithms (ICGA) and the 22nd Annual Genetic Programming Conference (GP).
Internet address

Fingerprint

Dive into the research topics of 'Exploiting linkage information in real-valued optimization with the real-valued gene-pool optimal mixing evolutionary algorithm'. Together they form a unique fingerprint.

Cite this