Exploiting nonlinear wave propagation to improve the precision of ultrasonic flow meters

Research output: Contribution to journalArticleScientificpeer-review

5 Citations (Scopus)
43 Downloads (Pure)

Abstract

Acoustic wave propagation in ultrasonic flow measurements is typically assumed to be linear and reciprocal. However, if the transmitting transducer generates a sufficiently high pressure, nonlinear wave propagation effects become significant. In flow measurements, this would translate into more information to estimate the flow and therefore a higher precision relative to the linear case. In this work, we investigate how the generated harmonics can be used to measure flow. Measurements in a custom-made flow loop and simulations using the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation will show that the second harmonic component provides similar transit time differences to those obtained from the fundamental component, their linear combination results in more precise flow measurements compared to the estimations with the fundamental component alone.

Original languageEnglish
Article number106476
Number of pages8
JournalUltrasonics
Volume116
DOIs
Publication statusPublished - 2021

Keywords

  • KZK equation
  • Nonlinear acoustics
  • Ultrasonic flow meter

Fingerprint

Dive into the research topics of 'Exploiting nonlinear wave propagation to improve the precision of ultrasonic flow meters'. Together they form a unique fingerprint.

Cite this