TY - JOUR
T1 - Exploiting nonlinear wave propagation to improve the precision of ultrasonic flow meters
AU - Massaad , Jack
AU - van Neer, Paul L.M.J.
AU - van Willigen, Douwe M.
AU - de Jong, Nicolaas
AU - Pertijs, Michiel A.P.
AU - Verweij, Martin D.
PY - 2021
Y1 - 2021
N2 - Acoustic wave propagation in ultrasonic flow measurements is typically assumed to be linear and reciprocal. However, if the transmitting transducer generates a sufficiently high pressure, nonlinear wave propagation effects become significant. In flow measurements, this would translate into more information to estimate the flow and therefore a higher precision relative to the linear case. In this work, we investigate how the generated harmonics can be used to measure flow. Measurements in a custom-made flow loop and simulations using the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation will show that the second harmonic component provides similar transit time differences to those obtained from the fundamental component, their linear combination results in more precise flow measurements compared to the estimations with the fundamental component alone.
AB - Acoustic wave propagation in ultrasonic flow measurements is typically assumed to be linear and reciprocal. However, if the transmitting transducer generates a sufficiently high pressure, nonlinear wave propagation effects become significant. In flow measurements, this would translate into more information to estimate the flow and therefore a higher precision relative to the linear case. In this work, we investigate how the generated harmonics can be used to measure flow. Measurements in a custom-made flow loop and simulations using the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation will show that the second harmonic component provides similar transit time differences to those obtained from the fundamental component, their linear combination results in more precise flow measurements compared to the estimations with the fundamental component alone.
KW - KZK equation
KW - Nonlinear acoustics
KW - Ultrasonic flow meter
UR - http://www.scopus.com/inward/record.url?scp=85108725023&partnerID=8YFLogxK
U2 - 10.1016/j.ultras.2021.106476
DO - 10.1016/j.ultras.2021.106476
M3 - Article
AN - SCOPUS:85108725023
SN - 0041-624X
VL - 116
JO - Ultrasonics
JF - Ultrasonics
M1 - 106476
ER -