Exploring an On-Chip Sensor to Detect Unique Faults in RRAMs

T.S. Copetti, M. Nilovic, M. Fieback, T. Gemmeke, S. Hamdioui, L.M. Bolzani Poehls

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

3 Citations (Scopus)
17 Downloads (Pure)

Abstract

Memristive devices have become promising candidates to complement and/or replace the CMOS technology, due to their CMOS manufacturing process compatibility, zero standby power consumption, high scalability, as well as their capability to implement high-density memories and new computing paradigms. Despite these advantages, memristive devices are also susceptible to manufacturing defects that may cause different faulty behaviors not observed in CMOS technology, significantly increasing the manufacturing test complexity. This work proposes a Design-for-Testability (DfT) strategy based on the introduction of a on-chip sensor that measures the current consumption of Resistive Random Access Memories (RRAMs) cells to provide the detection of unique faults. The new On-Chip Sensor (ON_CS) was validated using a case study 3×3 RRAM cell array with peripheral circuitry implemented based on a 130 nm Predictive Technology Model (PTM) library. Experimental results show that the proposed DfT strategy is able to detect not only traditional faults, but also unique faults that can affect RRAM cells. Finally, this paper proposes an DfT strategy that can detect unique faults with an unique operation and can be used during the normal operation of a RRAM.
Original languageEnglish
Title of host publicationProceedings of the 2022 IEEE 23rd Latin American Test Symposium (LATS)
PublisherIEEE
Pages1-6
Number of pages6
ISBN (Electronic)978-1-6654-5707-1
ISBN (Print)978-1-6654-5708-8
DOIs
Publication statusPublished - 2022
Event2022 IEEE 23rd Latin American Test Symposium (LATS) - Montevideo, Uruguay
Duration: 5 Sept 20228 Sept 2022

Conference

Conference2022 IEEE 23rd Latin American Test Symposium (LATS)
Country/TerritoryUruguay
CityMontevideo
Period5/09/228/09/22

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • RRAMs
  • Testing
  • Unique Faults
  • On-Chip Sensor

Fingerprint

Dive into the research topics of 'Exploring an On-Chip Sensor to Detect Unique Faults in RRAMs'. Together they form a unique fingerprint.

Cite this