TY - JOUR
T1 - Exploring the recovery capacity of recycling agents on atomic-scale energy properties of aged bitumen and their potential correlations with high-temperature rheological performance
AU - Ren, Shisong
AU - Liu, Xueyan
AU - Erkens, Sandra
PY - 2024
Y1 - 2024
N2 - This study implements molecular dynamics (MD) simulations to explore the atomic-level energy properties of rejuvenated bitumen, considering the influence of different recycling agent (RA) types, dosages and aging levels of bitumen. Moreover, the potential correlations between energy indices and high-temperature performance of rejuvenated bitumen are explored. Our findings show that recycling agents can effectively reinstate the cohesive energy density (CED) values of aged bitumen, correlating well with their high-temperature rheological properties. The results reveal that the energy parameters of potential energy (UVEP), kinetic energy (UWEK), non-bond energy (EN), total energy (UVET), diagonal energy (UNED), and cross-terms energy (ECT) can reflect the restoration level of recycling agents (RAs) on atomic-level energy characteristics of aged bitumen. Compared to rutting failure temperature (RFT), elastic recovery (R3.2), and creep compliance (Jnr3.2), the zero-shear viscosity (ZSV) greatly correlates with CED. Meanwhile, the UWEK index from MD simulations demonstrates a strong correlation with high-temperature rheological indicators of rejuvenated bitumen. With the rise in UWEK, there is a linear decrease in the RFT, Log(ZSV), and R3.2 values of rejuvenated bitumen. Conversely, the Log(Jnr3.2) exhibits a linear increasing trend. However, the correlation patterns between rheological indicators and either EN or ECT are contingent on the aging degree of bitumen. Based on the correlation coefficient, the UWEK stands out as the primary choice among all energy indices for predicting high-temperature rheological performance of rejuvenated bitumen.
AB - This study implements molecular dynamics (MD) simulations to explore the atomic-level energy properties of rejuvenated bitumen, considering the influence of different recycling agent (RA) types, dosages and aging levels of bitumen. Moreover, the potential correlations between energy indices and high-temperature performance of rejuvenated bitumen are explored. Our findings show that recycling agents can effectively reinstate the cohesive energy density (CED) values of aged bitumen, correlating well with their high-temperature rheological properties. The results reveal that the energy parameters of potential energy (UVEP), kinetic energy (UWEK), non-bond energy (EN), total energy (UVET), diagonal energy (UNED), and cross-terms energy (ECT) can reflect the restoration level of recycling agents (RAs) on atomic-level energy characteristics of aged bitumen. Compared to rutting failure temperature (RFT), elastic recovery (R3.2), and creep compliance (Jnr3.2), the zero-shear viscosity (ZSV) greatly correlates with CED. Meanwhile, the UWEK index from MD simulations demonstrates a strong correlation with high-temperature rheological indicators of rejuvenated bitumen. With the rise in UWEK, there is a linear decrease in the RFT, Log(ZSV), and R3.2 values of rejuvenated bitumen. Conversely, the Log(Jnr3.2) exhibits a linear increasing trend. However, the correlation patterns between rheological indicators and either EN or ECT are contingent on the aging degree of bitumen. Based on the correlation coefficient, the UWEK stands out as the primary choice among all energy indices for predicting high-temperature rheological performance of rejuvenated bitumen.
KW - Rejuvenated bitumen
KW - Atomic-scale energy indices
KW - Molecular dynamics simulation
KW - Potential correlations
UR - http://www.scopus.com/inward/record.url?scp=85190817589&partnerID=8YFLogxK
U2 - 10.1016/j.matdes.2024.112957
DO - 10.1016/j.matdes.2024.112957
M3 - Article
SN - 0264-1275
VL - 241
JO - Materials & Design
JF - Materials & Design
M1 - 112957
ER -