ExploRLLM: Guiding Exploration in Reinforcement Learning with Large Language Models

Runyu Ma, Jelle Luijkx, Zlatan Ajanovic, Jens Kober

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

In robot manipulation, Reinforcement Learning (RL) often suffers from low sample efficiency and uncertain convergence, especially in large observation and action spaces. Foundation Models (FMs) offer an alternative, demonstrating promise in zero-shot and few-shot settings. However, they can be unreliable due to limited physical and spatial understanding. We introduce ExploRLLM, a method that combines the strengths of both paradigms. In our approach, FMs improve RL convergence by generating policy code and efficient representations, while a residual RL agent compensates for the FMs' limited physical understanding. We show that Explorllm outperforms both policies derived from FMs and RL baselines in table-top manipulation tasks. Additionally, real-world experiments show that the policies exhibit promising zero-shot sim-to-real transfer. Supplementary material is available at https://explorllm.github.io.

Original languageEnglish
Title of host publicationProceedings of the IEEE International Conference on Robotics and Automation, ICRA 2025
PublisherIEEE
Pages9011-9017
Number of pages7
ISBN (Electronic)979-8-3315-4139-2
DOIs
Publication statusPublished - 2025
Event2025 IEEE International Conference on Robotics and Automation, ICRA 2025 - Atlanta, United States
Duration: 19 May 202523 May 2025

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2025 IEEE International Conference on Robotics and Automation, ICRA 2025
Country/TerritoryUnited States
CityAtlanta
Period19/05/2523/05/25

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/publishing/publisher-deals
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'ExploRLLM: Guiding Exploration in Reinforcement Learning with Large Language Models'. Together they form a unique fingerprint.

Cite this