Abstract
This article reformulates the multiple-input-multiple-output Volterra system identification problem as an extended Kalman filtering problem. This reformulation has two advantages. First, it results in a simplification of the solution compared to the Tensor Network Kalman filter as no tensor filtering equations are required anymore. The second advantage is that the reformulation allows to model correlations between the parameters of different multiple-input-single-output Volterra systems, which can lead to better accuracy. The curse of dimensionality in the exponentially large parameter vector and covariance matrix is lifted through the use of low-rank tensor networks. The computational complexity of our tensor network implementation is compared to the conventional implementation and numerical experiments demonstrate the effectiveness of the proposed method.
Original language | English |
---|---|
Title of host publication | Proceedings of the IEEE 58th Conference on Decision and Control, CDC 2019 |
Publisher | IEEE |
Pages | 7148-7153 |
ISBN (Electronic) | 978-1-7281-1398-2 |
DOIs | |
Publication status | Published - 2019 |
Event | 58th IEEE Conference on Decision and Control, CDC 2019 - Nice, France Duration: 11 Dec 2019 → 13 Dec 2019 |
Conference
Conference | 58th IEEE Conference on Decision and Control, CDC 2019 |
---|---|
Country/Territory | France |
City | Nice |
Period | 11/12/19 → 13/12/19 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.