Extension of incremental sequentially linear analysis to geometrical non-linearity with indirect displacement control

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The most widely used method for simulating the non-linear behaviour of concrete and masonry structures is the Newton–Raphson method with arc-length control (N-R method). However, this method may fail to produce converged results because of softening, negative tangent stiffness, bifurcations or snap-back. Sometimes, convergence can be obtained by controlling degrees of freedom in the failure process zone or by applying sequentially linear analysis (SLA). However, the location of the failure is often not known a priori and geometrical non-linearity needs to be included. Recently, incremental sequentially linear analysis (ISLA) has been proposed, which is based on a combination of the N-R method and SLA. The solution search path follows damage cycles sequentially with secant stiffness corresponding to local damage increments, which traces both damage history (explicit) and displacement history (implicit). The objective of this paper is to demonstrate that ISLA can be applied to problems that behave geometrically nonlinear in addition to physically nonlinear. In this paper, we introduce a method that combines ISLA with indirect displacement control. This method stabilises localised damage process areas and avoids the global unloading caused by geometrical and physical non-linearity. The method uses one or more control points, which are positioned independently of the failure process zones. Two masonry walls were tested and analysed. The load was perpendicular to their planes and evenly distributed. The walls were supported on two or four edges. Stable post-peak results were computed for large geometrical non-linear displacements, and localised crack propagation was computed robustly and correctly.

Original languageEnglish
Article number111562
Pages (from-to)1-17
Number of pages17
JournalEngineering Structures
Volume229
DOIs
Publication statusPublished - 2021

Keywords

  • Arc-length control
  • Divergence
  • Fracture mechanics
  • Geometrical non-linearity
  • Incremental
  • Masonry
  • Newton–Raphson method (N-R)
  • Quasi-brittle materials
  • Robustness
  • Sequentially linear analysis (SLA)
  • Structural mechanics

Fingerprint Dive into the research topics of 'Extension of incremental sequentially linear analysis to geometrical non-linearity with indirect displacement control'. Together they form a unique fingerprint.

Cite this