TY - JOUR
T1 - Failure Modes in Concrete Repair Systems due to Ongoing Corrosion
AU - Lukovic, Mladena
AU - Savija, Branko
AU - Ye, Guang
AU - Schlangen, Erik
AU - van Breugel, Klaas
PY - 2017
Y1 - 2017
N2 - Corrosion of steel reinforcement is the main cause of deterioration in reinforced concrete structures. It can result in cracking and spalling of the concrete cover. After the damaged cover is repaired, reinforcement corrosion might continue and even accelerate. While the development of the corrosion cell is difficult to control, the damage can be possibly delayed and controlled by use of a suitable repair material. The lattice fracture model is used in this paper to investigate the performance of strain hardening cementitious composite (SHCC) in concrete repair systems exposed to ongoing corrosion. Numerical results were verified by experimental tests when SHCC, nonreinforcedmaterial (repair mortar), and commercial repairmortar are used as repair materials. In experiments, reinforcement bars (surrounded by a repair material) were exposed to accelerated corrosion tests. The influence of the substrate surface preparation, the type of repair material, the interface, and the substrate strength on the resulting damage and failure mode of repair systems are discussed. In general, SHCC repair enables distributed cracking with small crack widths, up to several times smaller compared to repair mortar. Furthermore, more warning signs prior to the final failure are present in the SHCC repair system.
AB - Corrosion of steel reinforcement is the main cause of deterioration in reinforced concrete structures. It can result in cracking and spalling of the concrete cover. After the damaged cover is repaired, reinforcement corrosion might continue and even accelerate. While the development of the corrosion cell is difficult to control, the damage can be possibly delayed and controlled by use of a suitable repair material. The lattice fracture model is used in this paper to investigate the performance of strain hardening cementitious composite (SHCC) in concrete repair systems exposed to ongoing corrosion. Numerical results were verified by experimental tests when SHCC, nonreinforcedmaterial (repair mortar), and commercial repairmortar are used as repair materials. In experiments, reinforcement bars (surrounded by a repair material) were exposed to accelerated corrosion tests. The influence of the substrate surface preparation, the type of repair material, the interface, and the substrate strength on the resulting damage and failure mode of repair systems are discussed. In general, SHCC repair enables distributed cracking with small crack widths, up to several times smaller compared to repair mortar. Furthermore, more warning signs prior to the final failure are present in the SHCC repair system.
UR - http://resolver.tudelft.nl/uuid:013f4d5d-991d-40e6-971d-de078db25c36
U2 - 10.1155/2017/9649187
DO - 10.1155/2017/9649187
M3 - Article
SN - 1687-8434
JO - Advances in Materials Science and Engineering
JF - Advances in Materials Science and Engineering
M1 - 9649187
ER -