Fault Tolerant Control in Over-Actuated Hybrid Tilt-Rotor Unmanned Aerial Vehicles

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

70 Downloads (Pure)

Abstract

Quad-planes combine hovering and Vertical Takeoff and Landing (VTOL) capabilities with efficient forward flight. However, they are often vulnerable to gust disturbances and are not well-equipped to handle actuator faults. Dual-axis Tilt-Rotor quad-planes offer enhanced maneuverability due to their overactuation, which also enables stable hovering even after actuator failures. These vehicles can employ an Incremental Nonlinear Dynamic Inversion (INDI ) controller paired with a nonlinear Sequential Quadratic Programming (SQP ) Control Allocation (CA ) algorithm that can find hover solutions under actuator failure conditions. We explore both a combined allocation of linear and angular accelerations and a cascaded allocation scheme. Due to the large required changes in roll and pitch angles, the cascaded approach is selected for this research. The proposed algorithm was tested on a flying vehicle, demonstrating successful hovering and position control capabilities under a simulated Fault Detection and Identification (FDI) mechanism.
Original languageEnglish
Title of host publicationAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
Number of pages15
ISBN (Electronic)978-1-62410-723-8
DOIs
Publication statusPublished - 2025
EventAIAA SCITECH 2025 Forum - Orlando, United States
Duration: 6 Jan 202510 Jan 2025

Publication series

NameAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025

Conference

ConferenceAIAA SCITECH 2025 Forum
Country/TerritoryUnited States
CityOrlando
Period6/01/2510/01/25

Fingerprint

Dive into the research topics of 'Fault Tolerant Control in Over-Actuated Hybrid Tilt-Rotor Unmanned Aerial Vehicles'. Together they form a unique fingerprint.

Cite this