A general method for the creation of dilational surfaces

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)
90 Downloads (Pure)

Abstract

Dilational structures can change in size without changing their shape. Current dilational designs are only suitable for specific shapes or curvatures and often require parts of the structure to move perpendicular to the dilational surface, thereby occupying part of the enclosed volume. Here, we present a general method for creating dilational structures from arbitrary surfaces (2-manifolds with or without boundary), where all motions are tangent to the described surface. The method consists of triangulating the target curved surface and replacing each of the triangular faces by pantograph mechanisms according to a tiling algorithm that avoids collisions between neighboring pantographs. Following this algorithm, any surface can be made to mechanically dilate and could, theoretically, scale from the fully expanded configuration down to a single point. We illustrate the method with three examples of increasing complexity and varying Gaussian curvature.
Original languageEnglish
Article number5180
Number of pages7
JournalNature Communications
Volume10
Issue number1
DOIs
Publication statusPublished - 2019

Keywords

  • OA-Fund TU Delft

Fingerprint

Dive into the research topics of 'A general method for the creation of dilational surfaces'. Together they form a unique fingerprint.

Cite this