Fed-Batch Droplet Nanobioreactor for Controlled Growth of Cyberlindnera (Pichia) jadinii: A Proof-Of-Concept Demonstration

Kartik Totlani, Yen Chieh Wang, Maxime Bisschops, Thorben de Riese, Michiel T. Kreutzer, Walter M. van Gulik, Volkert van Steijn

Research output: Contribution to journalArticleScientificpeer-review

3 Downloads (Pure)

Abstract

A key bottleneck in bioprocess development is that state-of-the-art tools used for screening of cells and optimization of cultivation conditions do not represent the conditions enforced at industrial scale. At industrial scale, cell growth is strictly controlled (“fed-batch”) to optimize the metabolites produced by the cells. In contrast, cell growth is uncontrolled (“batch”) in microwells commonly used for bioprocess development due to the difficulty to continuously supply minute amounts of nutrients to the cells in these wells over the course of the cultivation experiment. This work addresses this bottleneck through the development of a droplet-based fed-batch nanobioreactor. A key challenge addressed in this work is the implementation of the required non-steady droplet operations on chip to establish a semi-continuous nutrient supply, while keeping the chip and its operation as simple as possible. The ability to study micro-organisms under nutrient-controlled fed-batch conditions is demonstrated using the yeast Cyberlindnera (Pichia) jadinii, with the cell growth rate controlled through the glucose concentration. Given the relative ease of operation and the potential to extend its features, the presented nanobioreactor provides a solid platform technology for further development and use in the field of bioprocess development and beyond.

Original languageEnglish
Number of pages10
JournalAdvanced Materials Technologies
DOIs
Publication statusPublished - 2021

Keywords

  • droplet microfluidics
  • fed-batch
  • lab-on-a-chip
  • yeast

Fingerprint

Dive into the research topics of 'Fed-Batch Droplet Nanobioreactor for Controlled Growth of Cyberlindnera (Pichia) jadinii: A Proof-Of-Concept Demonstration'. Together they form a unique fingerprint.

Cite this