TY - JOUR
T1 - Fed-Batch Droplet Nanobioreactor for Controlled Growth of Cyberlindnera (Pichia) jadinii
T2 - A Proof-Of-Concept Demonstration
AU - Totlani, Kartik
AU - Wang, Yen Chieh
AU - Bisschops, Maxime
AU - de Riese, Thorben
AU - Kreutzer, Michiel T.
AU - van Gulik, Walter M.
AU - van Steijn, Volkert
PY - 2021
Y1 - 2021
N2 - A key bottleneck in bioprocess development is that state-of-the-art tools used for screening of cells and optimization of cultivation conditions do not represent the conditions enforced at industrial scale. At industrial scale, cell growth is strictly controlled (“fed-batch”) to optimize the metabolites produced by the cells. In contrast, cell growth is uncontrolled (“batch”) in microwells commonly used for bioprocess development due to the difficulty to continuously supply minute amounts of nutrients to the cells in these wells over the course of the cultivation experiment. This work addresses this bottleneck through the development of a droplet-based fed-batch nanobioreactor. A key challenge addressed in this work is the implementation of the required non-steady droplet operations on chip to establish a semi-continuous nutrient supply, while keeping the chip and its operation as simple as possible. The ability to study micro-organisms under nutrient-controlled fed-batch conditions is demonstrated using the yeast Cyberlindnera (Pichia) jadinii, with the cell growth rate controlled through the glucose concentration. Given the relative ease of operation and the potential to extend its features, the presented nanobioreactor provides a solid platform technology for further development and use in the field of bioprocess development and beyond.
AB - A key bottleneck in bioprocess development is that state-of-the-art tools used for screening of cells and optimization of cultivation conditions do not represent the conditions enforced at industrial scale. At industrial scale, cell growth is strictly controlled (“fed-batch”) to optimize the metabolites produced by the cells. In contrast, cell growth is uncontrolled (“batch”) in microwells commonly used for bioprocess development due to the difficulty to continuously supply minute amounts of nutrients to the cells in these wells over the course of the cultivation experiment. This work addresses this bottleneck through the development of a droplet-based fed-batch nanobioreactor. A key challenge addressed in this work is the implementation of the required non-steady droplet operations on chip to establish a semi-continuous nutrient supply, while keeping the chip and its operation as simple as possible. The ability to study micro-organisms under nutrient-controlled fed-batch conditions is demonstrated using the yeast Cyberlindnera (Pichia) jadinii, with the cell growth rate controlled through the glucose concentration. Given the relative ease of operation and the potential to extend its features, the presented nanobioreactor provides a solid platform technology for further development and use in the field of bioprocess development and beyond.
KW - droplet microfluidics
KW - fed-batch
KW - lab-on-a-chip
KW - yeast
UR - http://www.scopus.com/inward/record.url?scp=85107131322&partnerID=8YFLogxK
U2 - 10.1002/admt.202100083
DO - 10.1002/admt.202100083
M3 - Article
AN - SCOPUS:85107131322
SN - 2365-709X
VL - 6
JO - Advanced Materials Technologies
JF - Advanced Materials Technologies
IS - 9
M1 - 2100083
ER -