Filamentary structures as the origin of blazar jet radio variability

Antonio Fuentes*, José L. Gómez*, José M. Martí, Manel Perucho, Guang Yao Zhao, Rocco Lico, Andrei P. Lobanov, Gabriele Bruni, Leonid I. Gurvits, More Authors

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review


Supermassive black holes at the centre of active galactic nuclei power some of the most luminous objects in the Universe. Typically, very-long-baseline interferometric observations of blazars have revealed only funnel-like morphologies with little information on the internal structure of the ejected plasma or have lacked the dynamic range to reconstruct the extended jet emission. Here we present microarcsecond-scale angular resolution images of the blazar 3C 279 obtained at 22 GHz with the space very-long-baseline interferometry mission RadioAstron, which allowed us to resolve the jet transversely and reveal several filaments produced by plasma instabilities in a kinetically dominated flow. The polarimetric properties derived from our high-angular-resolution and broad-dynamic-range images are consistent with the presence of a helical magnetic field threaded to the jet. We infer a clockwise rotation as seen in the direction of flow motion with an intrinsic helix pitch angle of ~45° and a Lorentz factor of ~13 at the time of observation. We also propose a model to explain blazar jet radio variability in which emission features travelling down the jet may manifest as a result of differential Doppler boosting within the filaments, as opposed to the standard shock-in-jet model. Characterizing such variability is particularly important given the relevance of blazar physics from cosmic particle acceleration to standard candles in cosmology.

Original languageEnglish
Pages (from-to)1359-1367
Number of pages9
JournalNature Astronomy
Issue number11
Publication statusPublished - 2023


Dive into the research topics of 'Filamentary structures as the origin of blazar jet radio variability'. Together they form a unique fingerprint.

Cite this