TY - GEN
T1 - Finding Degree-Constrained Acyclic Orientations
AU - Garvardt, Jaroslav
AU - Renken, Malte
AU - Schestag, Jannik
AU - Weller, Mathias
PY - 2023
Y1 - 2023
N2 - We consider the problem of orienting a given, undirected graph into a (directed) acyclic graph such that the in-degree of each vertex ν is in a prescribed list λ(ν). Variants of this problem have been studied for a long time and with various applications, but mostly without the requirement for acyclicity. Without this requirement, the problem is closely related to the classical General Factor problem, which is known to be NP-hard in general, but polynomial-time solvable if no list λ(ν) contains large "gaps" [Cornuejols, J. Comb. Theory B, 1988]. In contrast, we show that deciding if an acyclic orientation exists is NP-hard even in the absence of such "gaps". On the positive side, we design parameterized algorithms for various, natural parameterizations of the acyclic orientation problem. A special case of the orientation problem with degree constraints recently came up in the context of reconstructing evolutionary histories (that is, phylogenetic networks). This phylogenetic setting imposes additional structure onto the problem that can be exploited algorithmically, allowing us to show fixed-parameter tractability when parameterized by either the treewidth of G (a smaller parameter than the frequently employed "level"), by the number of vertices ν for which |λ(ν)| ≥ 2, by the number of vertices ν for which the highest value in λ(ν) is at least 2. While the latter result can be extended to the general degree-constraint acyclic orientation problem, we show that the former cannot unless FPT=W[1].
AB - We consider the problem of orienting a given, undirected graph into a (directed) acyclic graph such that the in-degree of each vertex ν is in a prescribed list λ(ν). Variants of this problem have been studied for a long time and with various applications, but mostly without the requirement for acyclicity. Without this requirement, the problem is closely related to the classical General Factor problem, which is known to be NP-hard in general, but polynomial-time solvable if no list λ(ν) contains large "gaps" [Cornuejols, J. Comb. Theory B, 1988]. In contrast, we show that deciding if an acyclic orientation exists is NP-hard even in the absence of such "gaps". On the positive side, we design parameterized algorithms for various, natural parameterizations of the acyclic orientation problem. A special case of the orientation problem with degree constraints recently came up in the context of reconstructing evolutionary histories (that is, phylogenetic networks). This phylogenetic setting imposes additional structure onto the problem that can be exploited algorithmically, allowing us to show fixed-parameter tractability when parameterized by either the treewidth of G (a smaller parameter than the frequently employed "level"), by the number of vertices ν for which |λ(ν)| ≥ 2, by the number of vertices ν for which the highest value in λ(ν) is at least 2. While the latter result can be extended to the general degree-constraint acyclic orientation problem, we show that the former cannot unless FPT=W[1].
KW - General Factor
KW - Graph Orientation
KW - NP-hardness
KW - Parameterized Algorithms
KW - Phylogenetic Networks
KW - Treewidth
UR - http://www.scopus.com/inward/record.url?scp=85180550148&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.IPEC.2023.19
DO - 10.4230/LIPIcs.IPEC.2023.19
M3 - Conference contribution
AN - SCOPUS:85180550148
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 18th International Symposium on Parameterized and Exact Computation, IPEC 2023
A2 - Misra, Neeldhara
A2 - Wahlstrom, Magnus
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 18th International Symposium on Parameterized and Exact Computation, IPEC 2023
Y2 - 6 September 2023 through 8 September 2023
ER -