Abstract
This paper presents an investigation of the effects of water injection within a simplified version of the Ansaldo GT36 reheat system. The investigation is carried out under realistic operating conditions of 20 atm and using large eddy simulation (LES) coupled with the thickened flame model (TFM) and an adaptive mesh refinement. The water injection conditions are optimized by performing a parametric study based on global sensitivity analysis and a surrogate model based on Gaussian process is employed as a way to reduce computational cost. In particular, the influence on the system performance of four design parameters, namely Sauter mean diameter, water mass flow and the angles of the spray's hollow cone, is tested to achieve an optimized solution. In the 'dry' case, the LES simulations show several flashback events, which are a defining aspect of the considered conditions, and attributed to compressive pressure waves resulting from autoignition in the core flow near the crossover temperature. The use of water injection is found to be effective in suppressing the flashback occurrence. In particular, the global sensitivity analysis shows that the external angle of the spray cone and the mass flow of water are the most important design parameters for flashback prevention. Moreover, NOx was shown to be reduced by about 17% by the use of the water injection at the tested conditions. Once an optimised condition with water injection is found, a recently proposed method to downscale the combustor to lower pressures is applied and tested. Additional LES are performed for this purpose at the 'dry', unstable condition and the 'wet', stable condition. Results show that similar dynamics, respectively unstable and stable, is predicted at 1 atm, suggesting the robustness of the method. This provides avenues for experimentally testing combustion dynamics at simplified conditions which are still representative of high-pressure practical configurations.
Original language | English |
---|---|
Title of host publication | Combustion, Fuels, and Emissions |
Publisher | The American Society of Mechanical Engineers (ASME) |
Number of pages | 13 |
ISBN (Electronic) | 9780791887950 |
DOIs | |
Publication status | Published - 2024 |
Event | 69th ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition, GT 2024 - London, United Kingdom Duration: 24 Jun 2024 → 28 Jun 2024 |
Publication series
Name | Proceedings of the ASME Turbo Expo |
---|---|
Volume | 3B-2024 |
Conference
Conference | 69th ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition, GT 2024 |
---|---|
Country/Territory | United Kingdom |
City | London |
Period | 24/06/24 → 28/06/24 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Flashback
- Global sensitivity analysis
- Hydrogen
- LES
- Reheat combustor
- Water injection