flexfringe: A Passive Automaton Learning Package

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

22 Citations (Scopus)


Finite state models, such as Mealy machines or state charts, are often used to express and specify protocol and software behavior. Consequently, these models are often used in verification, testing, and for assistance in the development and maintenance process. Reverse engineering these models from execution traces and log files, in turn, can accelerate and improve the software development and inform domain experts about the processes actually executed in a system. We present name, an open-source software tool to learn variants of finite state automata from traces using a state-of-the-art evidence-driven state-merging algorithm at its core. We embrace the need for customized models and tailored learning heuristics in different application domains by providing a flexible, extensible interface.
Original languageEnglish
Title of host publication2017 IEEE International Conference on Software Maintenance and Evolution, ICSME 2017
EditorsL. O'Conner
Place of PublicationPiscataway
Number of pages5
ISBN (Electronic)978-1-5386-0992-7
ISBN (Print)978-1-5386-0993-4
Publication statusPublished - 2017
EventICSME 2017: 33rd International Conference on Software Maintenance and Evolution - Shanghai, China
Duration: 17 Sept 201724 Sept 2017
Conference number: 33


ConferenceICSME 2017
Abbreviated titleICSME
Internet address


  • Learning Automata
  • Tools
  • Software algorithms
  • Software
  • Heuristic algorithms
  • Machine learning algorithms
  • Algorithm design and analysis


Dive into the research topics of 'flexfringe: A Passive Automaton Learning Package'. Together they form a unique fingerprint.

Cite this