Flexible active electrode arrays with ASICs that fit inside the rat's spinal canal

V. Giagka, A Demosthenous, N Donaldson

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)
15 Downloads (Pure)


Epidural spinal cord electrical stimulation (ESCS) has been used as a means to facilitate locomotor recovery in spinal cord injured humans. Electrode arrays, instead of conventional pairs of electrodes, are necessary to investigate the effect of ESCS at different sites. These usually require a large number of implantedwires,which could lead to infections. This paper presents the design, fabrication and evaluation of a novel flexible active array for ESCS in rats. Three small (1.7 mm2) and thin (100 μm) application specific integrated circuits (ASICs) are embedded in the polydimethylsiloxane-based implant. This arrangement limits the number of communication tracks to three, while ensuring maximum testing versatility by providing independent access to all 12 electrodes in any configuration. Laser-patterned platinum-iridium foil forms the implant’s conductive tracks and electrodes. Double rivet bonds were employed for the dice microassembly. The active electrode array can deliver current pulses (up to 1 mA, 100 pulses per second) and supports interleaved stimulation with independent control of the stimulus parameters for each pulse. The stimulation timing and pulse duration are very versatile. The array was electrically characterized through impedance spectroscopy and voltage transient recordings. A prototype was tested for long term mechanical reliability when subjected to continuous bending. The results revealed no track or bond failure. To the best of the authors’ knowledge, this is the first time that flexible active electrode arrays with embedded electronics suitable for implantation inside the rat’s spinal canal have been proposed, developed and tested in vitro.
Original languageEnglish
Pages (from-to)106-118
Number of pages13
JournalBiomedical Microdevices
Issue number6
Publication statusPublished - 2015


  • Active flexible electrode arrays
  • Application specific integrated circuits
  • Epidural stimulation
  • Laser patternedmicroelectrodes
  • Neurorehabilitation
  • Rivet bonding

Fingerprint Dive into the research topics of 'Flexible active electrode arrays with ASICs that fit inside the rat's spinal canal'. Together they form a unique fingerprint.

  • Cite this