Flight dynamic modeling and stability of a small-scale side-by-side helicopter for Urban Air Mobility

Francesco Mazzeo*, Marilena D. Pavel, Daniele Fattizzo, Giulia Bertolani, Emanuele L. de Angelis, Fabrizio Giulietti

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

This paper aims to explore the development of a flight dynamics model for a small-scale side-by-side helicopter and describe its trim and stability characteristics. The helicopter is considered a suitable candidate for Urban Air Mobility (UAM) solutions, because of its reliable design and low noise characteristics, but still very small knowledge is present on the mathematical modeling approaches and dynamic properties. A 14 degrees of freedom nonlinear mathematical model is developed and semi-analytical models are employed to account for the presence of the shrouds. An iterative trim routine is developed and applied with a suitable control mix that allows the use of classic helicopter controls. To control the vertical speed and roll rate, the paper assumes an equal collective pitch and lateral cyclic in the two rotors, while a uniform plus a differential longitudinal cyclic is adopted for pitch and yaw maneuvers. The paper discusses unique characteristics of the side-by-side configuration as obtained from the stability analysis: an unstable high-frequency mode, governed by the vertical velocity and pitch angle arises when the center of gravity (CG) of the vehicle is aligned or placed in front of the two main rotors. Similarly, both lateral phugoid and roll subsidence modes are sensitive to the CG location. The side-by-side configuration presents also a stable spiral mode which needs to be carefully designed.

Original languageEnglish
Article number109117
Number of pages1
JournalAerospace Science and Technology
Volume148
DOIs
Publication statusPublished - 2024

Keywords

  • Flight dynamics
  • Helicopter
  • Side-by-side
  • Stability
  • Trim
  • Urban Air Mobility

Fingerprint

Dive into the research topics of 'Flight dynamic modeling and stability of a small-scale side-by-side helicopter for Urban Air Mobility'. Together they form a unique fingerprint.

Cite this