Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities

Zhengxuan Liu, Yuekuan Zhou*, Jun Yan, Marcos Tostado-Véliz

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)


Ocean thermal and power energy systems are promising driving forces for seashore coastal communities to achieve net-zero energy/emission target, whereas energy planning and management on ocean thermal/power and distributed building integrated photovoltaic (BIPV) systems are critical, in terms of serving scale sizing and planning on geographical locations of district building community, and cycling aging of battery storages. However, the current literature provides insufficient studies on this topic. This study aims to address this research gap by transforming towards zero-energy coastal communities from the district level in subtropical regions, including centralised seawater-based chiller systems, distributed BIPVs and coastal oscillating water column technologies, as well as multi-directional Vehicle-to-Building energy interaction paradigms. Advanced energy management strategies were explored to enhance renewable penetration, import cost-saving, and deceleration of battery cycling aging, in response to relative renewable-to-demand difference, off-peak grid information with low price, and real-time battery cycling aging. Furthermore, in accordance with the power generation characteristic of two wave stations (i.e., Kau Yi Chau (KYC) and West Lamma Channel (WLC)) in Hong Kong, energy system planning and structural configurations of the coastal community were proposed and comparatively studied for the multi-criteria performance improvement. Research results showed that, compared to an air-cooled chiller, the water-cooled chiller with a much higher Coefficient of Performance (COP) will reduce the energy consumption of cooling systems, leading to a decrease in total electric demand from 134 to 126.5 kWh/m2·a. The scale for the net-zero energy district community with distributed BIPVs and oscillating water column was identified as 5 high-rise office buildings, 5 high-rise hotel buildings, 150 private cars and 120 public shuttle buses. Furthermore, the geographical location planning scheme on the Case 1 (office buildings close to KYC, and hotel buildings close to WLC) was identified as the most economically and environmentally feasible scheme, whereas the Case 3 (only office buildings are planned close to all power supply with oscillating water column) showed the highest flexibility in grid electricity shifting, together with the highest value of equivalent battery relative capacity. This study demonstrates techno-economic performances and energy flexibility of frontier ocean energy technologies in a coastal community under advanced energy management strategies, together with technical guidance for serving scale sizing and planning on geographical locations. The research results highlight the prospects and promote frontier ocean energy techniques in subtropical coastal regions.

Original languageEnglish
Article number128362
Number of pages17
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


  • Coastal oscillating water column
  • Cycling aging of battery
  • Energy management strategy
  • Ocean thermal/power energy
  • Scale sizing and energy planning
  • Solar energy


Dive into the research topics of 'Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities'. Together they form a unique fingerprint.

Cite this