Fundamental Limits on the Capacities of Bipartite Quantum Interactions

Stefan Bäuml, Siddhartha Das, Mark M. Wilde

Research output: Contribution to journalArticleScientificpeer-review

23 Citations (Scopus)
61 Downloads (Pure)

Abstract

Bipartite quantum interactions have applications in a number of different areas of quantum physics, reaching from fundamental areas such as quantum thermodynamics and the theory of quantum measurements to other applications such as quantum computers, quantum key distribution, and other information processing protocols. A particular aspect of the study of bipartite interactions is concerned with the entanglement that can be created from such interactions. In this Letter, we present our work on two basic building blocks of bipartite quantum protocols, namely, the generation of maximally entangled states and secret key via bipartite quantum interactions. In particular, we provide a nontrivial, efficiently computable upper bound on the positive-partial-transpose-assisted quantum capacity of a bipartite quantum interaction. In addition, we provide an upper bound on the secret-key-agreement capacity of a bipartite quantum interaction assisted by local operations and classical communication. As an application, we introduce a cryptographic protocol for the readout of a digital memory device that is secure against a passive eavesdropper.

Original languageEnglish
Article number250504
Number of pages6
JournalPhysical Review Letters
Volume121
Issue number25
DOIs
Publication statusPublished - 2018

Keywords

  • entanglement measures
  • quantum channels
  • quantum cryptography
  • quantum repeaters

Fingerprint

Dive into the research topics of 'Fundamental Limits on the Capacities of Bipartite Quantum Interactions'. Together they form a unique fingerprint.

Cite this