Abstract
Mechatronic systems have increasingly stringent performance requirements for motion control, leading to a situation where many factors, such as position-dependency, cannot be neglected in feedforward control. The aim of this paper is to compensate for position-dependent effects by modeling feedforward parameters as a function of position. A framework to model and identify feedforward parameters as a continuous function of position is developed by combining Gaussian processes and feedforward parameter learning techniques. The framework results in a fully data-driven approach, which can be readily implemented for industrial control applications. The framework is experimentally validated and shows a significant performance increase on a commercial wire bonder.
Original language | English |
---|---|
Title of host publication | Proceedings of the IEEE 17th International Conference on Advanced Motion Control (AMC 2022) |
Publisher | IEEE |
Pages | 268-273 |
ISBN (Print) | 978-1-7281-7711-3 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.