Abstract
Machine learning techniques, including Gaussian processes (GPs), are expected to play a significant role in meeting speed, accuracy, and functionality requirements in future data-intensive mechatronic systems. This paper aims to reveal the potential of GPs for motion control applications. Successful applications of GPs for feedforward and learning control, including the identification and learning for noncausal feedforward, position-dependent snap feedforward, nonlinear feedforward, and GP-based spatial repetitive control, are outlined. Experimental results on various systems, including a desktop printer, wirebonder, and substrate carrier, confirmed that data-based learning using GPs can significantly improve the accuracy of mechatronic systems.
Original language | English |
---|---|
Pages (from-to) | 396-407 |
Journal | IEEJ Journal of Industry Applications |
Volume | 11 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- feedforward control
- gaussian processes
- learning control