Gibbs-non-Gibbs transition in the fuzzy Potts models with a Kac-type interaction: Closing the Ising gap

Florian Henning, Richard Kraaij, Christof Külske

Research output: Contribution to journalArticleScientificpeer-review

6 Citations (Scopus)

Abstract

We complete the investigation of the Gibbs properties of the fuzzy Potts model on the d-dimensional torus with Kac interaction which was started by Jahnel and one of the authors in [JaKu17]. As our main result of the present paper, we extend the previous sharpness result of mean-field bounds to cover all possible cases of fuzzy transformations, allowing also for the occurrence of Ising classes (containing precisely two spin values). The closing of this previously left open Ising-gap involves an analytical argument showing uniqueness of minimizing profiles for certain non-homogeneous conditional variational problems.
Original languageEnglish
Pages (from-to)2051-2074
Number of pages23
JournalBernoulli: a journal of mathematical statistics and probability
Volume25
Issue number3
DOIs
Publication statusPublished - 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Gibbs-non-Gibbs transition in the fuzzy Potts models with a Kac-type interaction: Closing the Ising gap'. Together they form a unique fingerprint.

Cite this