Abstract
The advent of the digital era has revolutionized many aspect of our society and has significantly improved the quality of our lives. Consequently, signal processing has gained a considerable attention as the science behind the digital life. Among different applications for signal processing theory and algorithms, wireless communications remains one of the attractive and popular ones due to the widespread use of mobile devices.
This thesis is dedicated to develop signal processing algorithms to design highspeed wireless transceivers that can perform in highly reflective and harsh environments. The start of this research work initiated as a collaboration between TU Delft and an industrial partner, on a research aimed at short range gigabit wireless link within a lithography machine. The underlying unique wireless environment, together with the challenging specifications of the communication link for mechatronic systems, made this a compelling research project.
This thesis is dedicated to develop signal processing algorithms to design highspeed wireless transceivers that can perform in highly reflective and harsh environments. The start of this research work initiated as a collaboration between TU Delft and an industrial partner, on a research aimed at short range gigabit wireless link within a lithography machine. The underlying unique wireless environment, together with the challenging specifications of the communication link for mechatronic systems, made this a compelling research project.
Original language | English |
---|---|
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 22 Nov 2016 |
Electronic ISBNs | 978-94-6186-744-5 |
DOIs | |
Publication status | Published - 2016 |