Global Optimization of Low-Thrust Interplanetary Trajectories Using a Machine Learning Surrogate

P. Gómez Pérez, Y. Liu, K.J. Cowan

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientific

65 Downloads (Pure)

Abstract

In this work, we propose a new method to approximate the cost function of Low-Thrust, Multiple-Gravity-Assist interplanetary trajectories using a Machine Learning surrogate. We identified the computation time required to obtain training data as the main limitation when using Machine Learning methods for this purpose so we present a strategy to build the surrogate with limited training data. We built an Online-Sequential Extreme Learning Machine Multi-Agent System (OS-ELM-MAS) surrogate due to its theoretical good performance when the training data is limited. In addition, we define a method to include the surrogate during the optimization process that can be used with any gradient-free algorithm, and study the effect of several surrogate parameters on the optimization results. Finally, several interplanetary trajectories are optimized with and without the surrogate. Employing the surrogate results in up to 12% lower fuel cost values after a fixed optimization time. The parameters that control the interaction have to be carefully selected to achieve this improvement, and we show that the optimal value of these parameters can be narrowed down based on the characteristics of the transfers.
Original languageEnglish
Title of host publicationAdvances in the Astronautical Sciences
EditorsRoby Wilson, Jinjun Shan, Kathleen Howell, Felix Hoots
Pages5147-5166
Number of pages20
Volume175
ISBN (Electronic)978-0-87703-676-0
Publication statusPublished - 2021
Event2020 Astrodynamics Specialist Conference - virtual event
Duration: 9 Aug 202112 Aug 2021

Publication series

NameAdvances in the Astronautical Sciences
Volume175

Conference

Conference2020 Astrodynamics Specialist Conference
Period9/08/2112/08/21

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Global Optimization of Low-Thrust Interplanetary Trajectories Using a Machine Learning Surrogate'. Together they form a unique fingerprint.

Cite this