Abstract
Double-stage delay-multiply-and-sum (DS-DMAS) is an algorithm proposed for photoacoustic image reconstruction. The DS-DMAS algorithm offers a higher contrast than conventional delay-and-sum and delay-multiply and-sum but at the expense of higher computational complexity. Here, we utilized a compute unified device architecture (CUDA) graphics processing unit (GPU) parallel computation approach to address the high complexity of the DS-DMAS for photoacoustic image reconstruction generated from a commercial light-emitting diode (LED)–based photoacoustic scanner. In comparison with a single-threaded central processing unit (CPU), the GPU approach increased speeds by nearly 140-fold for 1024 × 1024 pixel image; there was no decrease in accuracy. The proposed implementation makes it possible to reconstruct photoacoustic images with frame rates of 250, 125, and 83.3 when the images are 64 × 64, 128 × 128, and 256 × 256, respectively. Thus, DS-DMAS can be efficiently used in clinical devices when coupled with CUDA GPU parallel computation.
Original language | English |
---|---|
Pages (from-to) | 301-316 |
Number of pages | 16 |
Journal | Ultrasonic Imaging |
Volume | 41 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2019 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Keywords
- beamforming
- central processing unit (CPU)
- compute unified device architecture (CUDA)
- double-stage delay-multiply-and-sum (DS-DMAS)
- graphics processing unit (GPU)
- linear-array imaging
- parallel computing
- photoacoustic imaging