GPU-based stochastic-gradient optimization for non-rigid medical image registration in time-critical applications

Parag Bhosale, Marius Staring, Zaid Al-Ars, Floris F. Berendsen

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

3 Citations (Scopus)
34 Downloads (Pure)


Currently, non-rigid image registration algorithms are too computationally intensive to use in time-critical applications. Existing implementations that focus on speed typically address this by either parallelization on GPU-hardware, or by introducing methodically novel techniques into CPU-oriented algorithms. Stochastic gradient descent (SGD) optimization and variations thereof have proven to drastically reduce the computational burden for CPU-based image registration, but have not been successfully applied in GPU hardware due to its stochastic nature. This paper proposes 1) NiftyRegSGD, a SGD optimization for the GPU-based image registration tool NiftyReg, 2) random chunk sampler, a new random sampling strategy that better utilizes the memory bandwidth of GPU hardware. Experiments have been performed on 3D lung CT data of 19 patients, which compared NiftyRegSGD (with and without random chunk sampler) with CPU-based elastix Fast Adaptive SGD (FASGD) and NiftyReg. The registration runtime was 21.5s, 4.4s and 2.8s for elastix-FASGD, NiftyRegSGD without, and NiftyRegSGD with random chunk sampling, respectively, while similar accuracy was obtained. Our method is publicly available at

Original languageEnglish
Title of host publicationMedical Imaging 2018
Subtitle of host publicationImage Processing
EditorsElsa D. Angelini, Bennett A. Landman
Place of PublicationBellingham, WA
ISBN (Electronic)9781510616370
Publication statusPublished - 2018
EventMedical Imaging 2018: Ultrasonic Imaging and Tomography - Houston, United States
Duration: 10 Feb 201815 Feb 2018

Publication series

NameProceedings of SPIE
ISSN (Electronic)0277-786X


ConferenceMedical Imaging 2018: Ultrasonic Imaging and Tomography
CountryUnited States


  • memory access optimization
  • Non-rigid image registration
  • random chunk sampling
  • stochastic gradient descent

Fingerprint Dive into the research topics of 'GPU-based stochastic-gradient optimization for non-rigid medical image registration in time-critical applications'. Together they form a unique fingerprint.

Cite this