Abstract
Fuels with high-knock resistance enable modern spark-ignition engines to achieve high efficiency and thus low CO2 emissions. Identification of molecules with desired autoignition properties indicated by a high research octane number and a high octane sensitivity is therefore of great practical relevance and can be supported by computer-aided molecular design (CAMD). Recent developments in the field of graph machine learning (graph-ML) provide novel, promising tools for CAMD. We propose a modular graph-ML CAMD framework that integrates generative graph-ML models with graph neural networks and optimization, enabling the design of molecules with desired ignition properties in a continuous molecular space. In particular, we explore the potential of Bayesian optimization and genetic algorithms in combination with generative graph-ML models. The graph-ML CAMD framework successfully identifies well-established high-octane components. It also suggests new candidates, one of which we experimentally investigate and use to illustrate the need for further autoignition training data.
Original language | English |
---|---|
Number of pages | 18 |
Journal | AIChE Journal |
DOIs | |
Publication status | Published - 2022 |
Keywords
- computer-aided molecular design
- fuel design
- graph machine learning
- graph neural networks
- machine learning
- optimization
- renewable fuels
- spark-ignition engines