Abstract
Ducted wind turbines (DWTs) can take the advantage of ground effect (GE) when installed close to urban areas. To this aim, a parametric study to investigate the aerodynamic performance of DWTs in relation to three different ground distances are investigated. The flow around a commercial DWT model using a simplified duct actuator disc (AD) model based on Reynolds Averaged Navier-Stokes (RANS) equations is performed. The results indicate that DWTs placed close to the ground will lead to increased mass flow rate the turbine plane, and thereby improving the aerodynamic performance. However, the additional ground force leads to an asymmetric flow-field at the turbine plane, which will ultimately induce unsteady forces on the DWT system. The present analysis will serve as a strong recommendation to address siting issues for DWT manufacturers.
Original language | English |
---|---|
Article number | 042079 |
Number of pages | 9 |
Journal | Journal of Physics: Conference Series |
Volume | 2265 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2022 |
Event | 2022 Science of Making Torque from Wind, TORQUE 2022 - Delft, Netherlands Duration: 1 Jun 2022 → 3 Jun 2022 |