TY - JOUR
T1 - Guidelines for the Selection of Scintillators for Indirect Photon-Counting X-ray Detectors
AU - van Blaaderen, J. Jasper
AU - van Aarle, Casper
AU - Leibold, David
AU - Dorenbos, Pieter
AU - Schaart, Dennis R.
PY - 2025
Y1 - 2025
N2 - X-ray photon-counting detectors (PCDs) are a rapidly developing technology. Current PCDs used in medical imaging are based on CdTe, CZT, or Si semiconductor detectors, which directly convert X-ray photons into electrical pulses. An alternative approach is to combine ultrafast scintillators with silicon photomultipliers (SiPMs). Here, an overview is presented of different classes of scintillators, with the aim of assessing their potential application in scintillator-SiPM based indirect X-ray PCDs. To this end, three figures of merit (FOMs) are defined: the pulse intensity, the pulse duration, and the pulse quality. These FOMs quantify how characteristics such as light yield, pulse shape, and energy resolution affect the suitability of scintillators for application in indirect PCDs. These FOMs are based on emissive characteristics; a fourth FOM (ρZeff3.5) is used to also take stopping power into account. Other important properties for the selection process include low self-absorption, low after-glow, possibility to produce sub-mm pitch pixel arrays, and cost-effectiveness. It is shown that material classes with promising emission properties are Ce3+- or Pr3+-doped materials, near band gap exciton emitters, plastics, and core-valence materials. Possible shortcomings of each of these groups, e.g., suboptimal emission wavelength, nonproportionality, and density, are discussed. Additionally, the engineering approach of quenching the scintillator emission, resulting in a targeted shortening of the decay time, and the possibility of codoping are explored. When selecting and/or engineering a material, it is important to consider not only the characteristics of the scintillator but also relevant SiPM properties, such as recharge time and photodetection efficiency.
AB - X-ray photon-counting detectors (PCDs) are a rapidly developing technology. Current PCDs used in medical imaging are based on CdTe, CZT, or Si semiconductor detectors, which directly convert X-ray photons into electrical pulses. An alternative approach is to combine ultrafast scintillators with silicon photomultipliers (SiPMs). Here, an overview is presented of different classes of scintillators, with the aim of assessing their potential application in scintillator-SiPM based indirect X-ray PCDs. To this end, three figures of merit (FOMs) are defined: the pulse intensity, the pulse duration, and the pulse quality. These FOMs quantify how characteristics such as light yield, pulse shape, and energy resolution affect the suitability of scintillators for application in indirect PCDs. These FOMs are based on emissive characteristics; a fourth FOM (ρZeff3.5) is used to also take stopping power into account. Other important properties for the selection process include low self-absorption, low after-glow, possibility to produce sub-mm pitch pixel arrays, and cost-effectiveness. It is shown that material classes with promising emission properties are Ce3+- or Pr3+-doped materials, near band gap exciton emitters, plastics, and core-valence materials. Possible shortcomings of each of these groups, e.g., suboptimal emission wavelength, nonproportionality, and density, are discussed. Additionally, the engineering approach of quenching the scintillator emission, resulting in a targeted shortening of the decay time, and the possibility of codoping are explored. When selecting and/or engineering a material, it is important to consider not only the characteristics of the scintillator but also relevant SiPM properties, such as recharge time and photodetection efficiency.
UR - http://www.scopus.com/inward/record.url?scp=85218975080&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.4c03437
DO - 10.1021/acs.chemmater.4c03437
M3 - Review article
AN - SCOPUS:85218975080
SN - 0897-4756
VL - 37
SP - 1716
EP - 1740
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 5
ER -