Abstract
Solder fatigue is a key failure mode in the electronic industry. Monitoring the actual degradation of the solder under real-time conditions in any application would be extremely beneficial. In this chapter, we describe the combination of experimental material characterization with numerical finite element (FE) simulations to obtain a prognostics and health monitoring (PHM) methodology for LED drivers used in outdoor lighting applications. Experimental characterization of a new type of solder is described. A FE model is created of a typical component in electronic drivers. The calculated damage level and the collected life data correlate together and form a model for predicting the lifetime of the drivers at certain user condition. The developed PHM methodology helps in identifying and reporting the failure of the driver in real time or can be used for predicting the actual remaining useful life (RUL).
Original language | English |
---|---|
Title of host publication | Recent Advances in Microelectronics Reliability |
Subtitle of host publication | Contributions from the European ECSEL JU Project iRel40 |
Publisher | Springer |
Pages | 339-354 |
Number of pages | 16 |
ISBN (Electronic) | 978-3-031-59361-1 |
ISBN (Print) | 978-3-031-59360-4 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.