High-frequency measurement of concentration in an isothermal methane-air gas mixture using spontaneous Raman spectroscopy

Jocelino Rodrigues, Lee Weller, Francesca De Domenico, Simone Hochgreb

Research output: Contribution to journalArticleScientificpeer-review

46 Downloads (Pure)

Abstract

A high-frequency (1.5 kHz) spontaneous Raman spectroscopy measurement technique is developed and applied to measure external fluctuations generated in the local concentration of an isothermal binary gas mixture of methane and air. Raman excitation is provided by a high-frequency laser at 527 nm in dual-pulsed mode. The Stokes Raman signal is collected using an EMCCD camera coupled to a high-frequency intensifier as a shutter. The emitted signal is collected over the 596–627 nm wavelength range, which allows for the simultaneous tracking of methane and nitrogen Stokes Q-branch mode signals. Calibration curves are initially obtained for each species (CH 4 and N 2) based on steady-state concentrations, and further corrected during use to detect local unsteady mixture fluctuations at gas pulsation frequencies up to 250 Hz. The main novelty is the demonstration of Raman spectroscopy for the simultaneous multispecies measurement of unsteady concentrations of gas-phase methane and air mixtures using a laser beam with a high-repetition rate, low energy per pulse, combined with a high-frequency intensifier and a single camera.

Original languageEnglish
Article number12472
Pages (from-to)12472
Number of pages1
JournalScientific Reports
Volume13
Issue number1
DOIs
Publication statusPublished - 2023

Fingerprint

Dive into the research topics of 'High-frequency measurement of concentration in an isothermal methane-air gas mixture using spontaneous Raman spectroscopy'. Together they form a unique fingerprint.

Cite this