High-performance type II WSOx/WS2-based heterojunction photodetectors

Weiqi shi, Yifang Ding, Shaojun Fang, Hong Zhou, Jiao Qi, Jiajie Fan, Rongjun Zhang*, Guoqi Zhang, Hongyu Tang

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Van der Waals heterojunctions (vdWHs) have garnered significant attention for their promising applications in optoelectronics, attributed to their exceptional physical attributes. In this study, we present a straightforward approach to fabricating high-performance vdWHs photodetectors. Specifically, we prepared WSOx/WS2 vdWH photodetectors through the ozone oxidation of a WS2 thin films at 100 °C. To characterize the morphology and optical properties of both the WS2 and WSOx/WS2 thin films, we utilized atomic force microscopy (AFM) and Raman spectroscopy. Additionally, X-ray photoelectron spectroscopy (XPS) was employed to delve into the structural evolution by scrutinizing the bonding states of W, O, and S in the WS2 before and after the ozone oxidation process. The resultant WSOx/WS2 vdWH photodetectors exhibited impressive photoelectric performance at wavelengths of 475 nm and 532 nm. It demonstrated a high responsivity of 230.7 A/W, a remarkable specific detectivity of 1.794 × 1011 Jones, and a swift response speed of 60 ms at 475 nm. Furthermore, first-principles calculations based on density functional theory (DFT) were conducted to validate the oxidation kinetics of monolayer WS2, the type II energy band alignment, and the interlayer charge transfer within the WSOx/WS2 vdWH. This research contributes novel insights into the synthesis of two-dimensional transition metal oxides (TMOs)-transition metal dichalcogenides (TMDCs) heterostructures for photodetector applications.

Original languageEnglish
Article number161848
Number of pages9
JournalApplied Surface Science
Volume683
DOIs
Publication statusPublished - 2025

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • 2D materials
  • First-principles analysis
  • Photodetectors
  • Van der Waals heterostructures
  • WSO/WS

Fingerprint

Dive into the research topics of 'High-performance type II WSOx/WS2-based heterojunction photodetectors'. Together they form a unique fingerprint.

Cite this