HiREX: High-Throughput Reactivity Exploration for Extended Databases of Transition-Metal Catalysts

Ali Hashemi*, Sana Bougueroua, Marie Pierre Gaigeot, Evgeny A. Pidko*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
56 Downloads (Pure)

Abstract

A method is introduced for the automated analysis of reactivity exploration for extended in silico databases of transition-metal catalysts. The proposed workflow is designed to tackle two key challenges for bias-free mechanistic explorations on large databases of catalysts: (1) automated exploration of the chemical space around each catalyst with unique structural and chemical features and (2) automated analysis of the resulting large chemical data sets. To address these challenges, we have extended the application of our previously developed ReNeGate method for bias-free reactivity exploration and implemented an automated analysis procedure to identify the classes of reactivity patterns within specific catalyst groups. Our procedure applied to an extended series of representative Mn(I) pincer complexes revealed correlations between structural and reactive features, pointing to new channels for catalyst transformation under the reaction conditions. Such an automated high-throughput virtual screening of systematically generated hypothetical catalyst data sets opens new opportunities for the design of high-performance catalysts as well as an accelerated method for expert bias-free high-throughput in silico reactivity exploration.

Original languageEnglish
Pages (from-to)6081-6094
Number of pages14
JournalJournal of Chemical Information and Modeling
Volume63
Issue number19
DOIs
Publication statusPublished - 2023

Fingerprint

Dive into the research topics of 'HiREX: High-Throughput Reactivity Exploration for Extended Databases of Transition-Metal Catalysts'. Together they form a unique fingerprint.

Cite this