TY - JOUR
T1 - “How sweet are your strawberries?”
T2 - Predicting sugariness using non-destructive and affordable hardware
AU - Wen, Junhan
AU - Abeel, Thomas
AU - de Weerdt, Mathijs
PY - 2023
Y1 - 2023
N2 - Global soft fruit supply chains rely on trustworthy descriptions of product quality. However, crucial criteria such as sweetness and firmness cannot be accurately established without destroying the fruit. Since traditional alternatives are subjective assessments by human experts, it is desirable to obtain quality estimations in a consistent and non-destructive manner. The majority of research on fruit quality measurements analyzed fruits in the lab with uniform data collection. However, it is laborious and expensive to scale up to the level of the whole yield. The “harvest-first, analysis-second” method also comes too late to decide to adjust harvesting schedules. In this research, we validated our hypothesis of using in-field data acquirable via commodity hardware to obtain acceptable accuracies. The primary instance that the research concerns is the sugariness of strawberries, described by the juice’s total soluble solid (TSS) content (unit: °Brix or Brix). We benchmarked the accuracy of strawberry Brix prediction using convolutional neural networks (CNN), variational autoencoders (VAE), principal component analysis (PCA), kernelized ridge regression (KRR), support vector regression (SVR), and multilayer perceptron (MLP), based on fusions of image data, environmental records, and plant load information, etc. Our results suggest that: (i) models trained by environment and plant load data can perform reliable prediction of aggregated Brix values, with the lowest RMSE at 0.59; (ii) using image data can further supplement the Brix predictions of individual fruits from (i), from 1.27 to as low up to 1.10, but they by themselves are not sufficiently reliable.
AB - Global soft fruit supply chains rely on trustworthy descriptions of product quality. However, crucial criteria such as sweetness and firmness cannot be accurately established without destroying the fruit. Since traditional alternatives are subjective assessments by human experts, it is desirable to obtain quality estimations in a consistent and non-destructive manner. The majority of research on fruit quality measurements analyzed fruits in the lab with uniform data collection. However, it is laborious and expensive to scale up to the level of the whole yield. The “harvest-first, analysis-second” method also comes too late to decide to adjust harvesting schedules. In this research, we validated our hypothesis of using in-field data acquirable via commodity hardware to obtain acceptable accuracies. The primary instance that the research concerns is the sugariness of strawberries, described by the juice’s total soluble solid (TSS) content (unit: °Brix or Brix). We benchmarked the accuracy of strawberry Brix prediction using convolutional neural networks (CNN), variational autoencoders (VAE), principal component analysis (PCA), kernelized ridge regression (KRR), support vector regression (SVR), and multilayer perceptron (MLP), based on fusions of image data, environmental records, and plant load information, etc. Our results suggest that: (i) models trained by environment and plant load data can perform reliable prediction of aggregated Brix values, with the lowest RMSE at 0.59; (ii) using image data can further supplement the Brix predictions of individual fruits from (i), from 1.27 to as low up to 1.10, but they by themselves are not sufficiently reliable.
KW - non-destructive analysis
KW - in-field test
KW - machine learning
KW - computer vision
KW - data fusion
KW - feature selection
KW - total soluble solid
KW - crop management
UR - http://www.scopus.com/inward/record.url?scp=85152522706&partnerID=8YFLogxK
U2 - 10.3389/fpls.2023.1160645
DO - 10.3389/fpls.2023.1160645
M3 - Article
VL - 14
JO - Frontiers in Plant Science
JF - Frontiers in Plant Science
SN - 1664-462x
M1 - 1160645
ER -