Abstract
Recent studies have shown that tunable magnets (soft permanent magnets) can significantly reduce Joule heating in electromagnetic actuators. To achieve high motion accuracy and repeatability, this article proposes a novel actuator design with a linearized force-flux relation. In prior designs of variable reluctance tunable magnet actuators, the force and flux are related quadratically via a C-shaped actuator. Hybrid tunable magnet actuators based on biased fluxes are developed using lumped parameter models. Using finite element analysis, it is shown that the force-flux relation is symmetric linear around the mid position depending on the magnetic flux direction in the magnet. Within a position range of ±500 μm and a force range of ±20 N, the linear fit produces a negligible error of 0.08 N. Finally, this linear relationship is validated with a 0.03-N error in an experimental setup.
Original language | English |
---|---|
Pages (from-to) | 5073-5082 |
Journal | IEEE Transactions on Industrial Electronics |
Volume | 71 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Actuators
- Force
- Magnetic circuits
- Magnetic flux
- Magnetic hysteresis
- Magnetic separation
- Magnetomechanical effects
- Saturation magnetization
- tunable magnets
- variable reluctance actuator