Hydrogen accommodation and its role in lattice symmetry in a TiNbZr medium-entropy alloy

Chengguang Wu, Yilun Gong*, Chang Liu, Xuehan Li, Gökhan Gizer, Claudio Pistidda, Fritz Körmann, Yan Ma*, Jörg Neugebauer, Dierk Raabe

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

5 Downloads (Pure)

Abstract

Refractory medium/high-entropy alloys (M/HEAs) are emerging as promising alternative materials for hydrogen storage and hydrogen combustion engines due to their favorable thermodynamic and kinetic conditions for hydrogen accommodation (for the former) and promising high-temperature mechanical properties (for the latter). A better understanding of hydrogen-metal interactions is necessary to advance the development of this material class, thus helping leverage hydrogen-based applications. Here we reveal the microstructural evolution of a TiNbZr MEA by in-situ synchrotron high-energy X-ray diffraction (HEXRD) during hydrogenation in pure H2 gas at atmospheric pressure. At 500 °C, dissolved hydrogen atoms gradually expand the crystal lattice isotropically, and the body-centered cubic crystal remains stable up to a hydrogen concentration of ∼46.4 at.%. The thermodynamics of hydrogen accommodation associated with experimental observations in the crystal lattice is elucidated using density functional theory (DFT). The calculations suggest that tetrahedral interstitial sites are the thermodynamically favorable positions for hydrogen accommodation in both cases (i) for a single hydrogen in the special quasirandom structure supercell and (ii) at a high hydrogen concentration (∼45.4 at.%). In the latter case, hydrogen interstitials are randomly distributed on the tetrahedral sites. Upon cooling, it is observed that the body-centered cubic lattice transforms to a body-centered tetragonal structure. The DFT calculations show that this change is related to the ordering distribution of hydrogen interstitials within the TiNbZr lattice. By combining in-situ HEXRD experiments and DFT calculations, the study provides fundamental insights into hydrogen accommodation in the interstitial positions and its impact on the lattice symmetry in TiNbZr MEA.

Original languageEnglish
Article number120852
Number of pages16
JournalActa Materialia
Volume288
DOIs
Publication statusPublished - 2025

Keywords

  • Hydrogen accommodation
  • Medium-entropy alloys
  • Microstructural evolution
  • Ordering effect
  • Tetragonality

Fingerprint

Dive into the research topics of 'Hydrogen accommodation and its role in lattice symmetry in a TiNbZr medium-entropy alloy'. Together they form a unique fingerprint.

Cite this