Hyperbolic phonon polaritons in hexagonal boron nitride

S. Dai, Q. Ma, Z. Fei, M. Liu, M.D. Goldflam, T. Andersen, W. Garnett, W. Regan, M. Wagner, A.S. McLeod, A. Rodin, Shouen Zhu, Kenji Watanabe, T. Taniguchi, G. Dominguez, M. Thiemens, A.H. Castro Neto, G.C.A.M. Janssen, A. Zetti, F. KeilmannP. Jarillo-Herrero, M.M. Fogler, D.N. Basov

Research output: Contribution to conferenceAbstractScientific

73 Citations (Scopus)

Abstract

Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the “hyperlens” for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).
Original languageEnglish
Number of pages1
DOIs
Publication statusPublished - 2016
EventSPIE Nanoscience + Engineering: Metamaterials, Metadevices, and Metasystems 2016 - San Diego, CA, United States
Duration: 28 Aug 20161 Sep 2016

Conference

ConferenceSPIE Nanoscience + Engineering: Metamaterials, Metadevices, and Metasystems 2016
CountryUnited States
CitySan Diego, CA
Period28/08/161/09/16

Fingerprint Dive into the research topics of 'Hyperbolic phonon polaritons in hexagonal boron nitride'. Together they form a unique fingerprint.

Cite this