Identification of carbon-containing phases in electrodeposited hard Fe–C coatings with intentionally codeposited carbon

Kristof Marcoen*, Mélanie Gauvin, Ansbert De Cleene, Jacob Obitsø Nielsen, Kitty Baert, Herman Terryn, Joost De Strycker, Tom Hauffman, Karen Pantleon

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

97 Downloads (Pure)

Abstract

Electrodeposition from an environmentally friendly iron sulfate electrolyte with citric acid as carbon source has gained attention recently, because of excellent mechanical properties of the resulting Fe–C coatings with intentionally codeposited high-carbon concentrations. While being very attractive as protective coatings and sustainable alternatives for hard chrome coatings, comprehensive understanding of the coatings' chemical constitution including the type and location of carbon-containing phases is still lacking. The amount of codeposited carbon of up to about 0.8 wt.% significantly exceeds the solubility of carbon in ferrite, although carbon-free ferrite is the only unambiguously reported phase in as-deposited Fe–C coatings so far. In the present work, time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and soft X-ray emission spectroscopy have been applied to identify the carbon-containing phases, which are present as minor secondary phases in the coatings but are known to have an important influence on the coatings' properties. Three carbon-containing phases could be distinguished, homogeneously distributed in the nanocrystalline ferrite base material. Iron acetates, amorphous carbon, and carbides were found in both as-deposited and annealed Fe–C coatings up to 300°C, but their fraction changes during postdeposition annealing.

Original languageEnglish
Pages (from-to)336-346
Number of pages11
JournalSurface and Interface Analysis
Volume55
Issue number5
DOIs
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • annealing
  • carbon
  • chemical analysis
  • electrodeposition
  • Fe–C coating

Fingerprint

Dive into the research topics of 'Identification of carbon-containing phases in electrodeposited hard Fe–C coatings with intentionally codeposited carbon'. Together they form a unique fingerprint.

Cite this