Identify Finger Rotation Angles With ArUco Markers and Action Cameras

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
40 Downloads (Pure)

Abstract

Measuring the motions of human hand joints is often a challenge due to the high number of degrees-of-freedom. In this study, we proposed a hand tracking system utilizing action cameras and ArUco markers to continuously measure the rotation angles of hand joints during motion. Three methods were developed to estimate the joint rotation angles. The pos-based method transforms marker positions to a reference coordinate system and extracts a hand skeleton to identify the rotation angles. Similarly, the orient-x-based method calculates the rotation angles from the transformed x-orientations of the detected markers in the reference coordinate system. In contrast, the orient-mat-based method first identifies the rotation angles in each camera coordinate system using the detected orientations and then synthesizes the results regarding each joint. Experiment results indicated that the repeatability errors with one camera regarding different marker sizes were around 2.64–27.56 deg and 0.60–2.36 deg using the marker positions and orientations, respectively. With multiple cameras employed, the joint rotation angles measured by using the three methods were compared with that measured by a goniometer. Comparison results indicated that the results of using the orient-mat-based method are more stable and efficient and can describe more types of movements. The effectiveness of this method was further verified by capturing hand movements of several participants. Therefore, it is recommended for measuring joint rotation angles in practical setups.
Original languageEnglish
Article number031011
Number of pages11
JournalJournal of Computing and Information Science in Engineering
Volume22
Issue number3
DOIs
Publication statusPublished - 2022

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • hand tracking
  • hand kinematics
  • finger rotation angle

Fingerprint

Dive into the research topics of 'Identify Finger Rotation Angles With ArUco Markers and Action Cameras'. Together they form a unique fingerprint.

Cite this