TY - JOUR
T1 - Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East China
AU - Guo, Yuxue
AU - Fang, Guohua
AU - Xu, Yue Ping
AU - Tian, Xin
AU - Xie, Jingkai
N1 - Accepted Author Manuscript
PY - 2020
Y1 - 2020
N2 - Climate and land use/cover changes are the main factors altering hydrological regimes. To understand the impacts of climate and land use/cover changes on streamflow within a specific catchment, it is essential to accurately quantify their changes given many possibilities. We propose an integrated framework to assess how individual and combined climate and land use/cover changes impact the streamflow of Xinanjiang Basin, in East China, in the future. Five bias-corrected and downscaled General Circulation Model (GCM) projections are used to indicate the inter-model uncertainties under three Representative Concentration Pathways (RCPs). Additionally, three land use/cover change scenarios representing a range of tradeoffs between ecological protection (EP) and urban development (UD) are projected by Cellular Automata - Markov (CA-Markov). The streamflow in 2021–2050 is then assessed using the calibrated Soil and Water Assessment Tool (SWAT) with 15 scenarios and 75 possibilities. Finally, the uncertainty and attribution of streamflow changes to climate and land use/cover changes at monthly and annual scale are analyzed. Results show that while both land use/cover change alone and combined changes project an increase in streamflow, there is a disagreement on the direction of streamflow change under climate change alone. Future streamflow may undergo a more blurred boundary between the flood and non-flood seasons, potentially easing the operation stress of Xinanjiang Reservoir for water supply or hydropower generation. We find that the impacts of climate and land use/cover changes on monthly mean streamflow are sensitive to the impermeable area (IA). The impacts of climate change are stronger than those induced by land use/cover change under EP (i.e., lower IA); and land use/cover change has a greater impact in case of UD (i.e., higher IA). However, changes in annual mean streamflow are mainly driven by land use/cover change, and climate change may decrease the influence attributed to land use/cover change.
AB - Climate and land use/cover changes are the main factors altering hydrological regimes. To understand the impacts of climate and land use/cover changes on streamflow within a specific catchment, it is essential to accurately quantify their changes given many possibilities. We propose an integrated framework to assess how individual and combined climate and land use/cover changes impact the streamflow of Xinanjiang Basin, in East China, in the future. Five bias-corrected and downscaled General Circulation Model (GCM) projections are used to indicate the inter-model uncertainties under three Representative Concentration Pathways (RCPs). Additionally, three land use/cover change scenarios representing a range of tradeoffs between ecological protection (EP) and urban development (UD) are projected by Cellular Automata - Markov (CA-Markov). The streamflow in 2021–2050 is then assessed using the calibrated Soil and Water Assessment Tool (SWAT) with 15 scenarios and 75 possibilities. Finally, the uncertainty and attribution of streamflow changes to climate and land use/cover changes at monthly and annual scale are analyzed. Results show that while both land use/cover change alone and combined changes project an increase in streamflow, there is a disagreement on the direction of streamflow change under climate change alone. Future streamflow may undergo a more blurred boundary between the flood and non-flood seasons, potentially easing the operation stress of Xinanjiang Reservoir for water supply or hydropower generation. We find that the impacts of climate and land use/cover changes on monthly mean streamflow are sensitive to the impermeable area (IA). The impacts of climate change are stronger than those induced by land use/cover change under EP (i.e., lower IA); and land use/cover change has a greater impact in case of UD (i.e., higher IA). However, changes in annual mean streamflow are mainly driven by land use/cover change, and climate change may decrease the influence attributed to land use/cover change.
KW - Attribution
KW - Climate change
KW - Land use/cover change
KW - Multiple scenarios
KW - Streamflow response
KW - Uncertainty
UR - http://www.scopus.com/inward/record.url?scp=85077356871&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2019.136275
DO - 10.1016/j.scitotenv.2019.136275
M3 - Article
AN - SCOPUS:85077356871
SN - 0048-9697
VL - 710
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 136275
ER -