Immobilization of gluten in spherical matrices of food-grade hydrogels

Marloes Reus, George Krintiras, Georgios Stefanidis, Joop ter Horst, Antoine van der Heijden

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)

Abstract

The aim of this paper is to produce spherical encapsulates of wheat gluten in a food-grade biopolymer for preparing sheared meat analogs, to prevent instant fibrilization of the gluten during a pre-mixing step. The hydrogel should release the gluten inside the Couette Cell, as a result of the higher temperature and shear in the process. Both sodium alginate and κ-carrageenan were used as encapsulants. Spherical particles of hydrogel-gluten mixtures were produced by means of a dripping method using an encapsulator. While the particle properties of κ-carrageenan surpassed those of alginate in terms of controlled release of the core, the particle production using the encapsulator was more complicated. With κ-carrageenan, a layer of oil on top of the cross-linking bath fluid, as well as through the outer orifice of a concentric nozzle were required to obtain a good sphericity of the particles. For the alginate particles the use of oil was not necessary. Gluten loadings of 7% w/w were achieved with 1.5% w/w alginate and with 2% w/w κ-carrageenan. The water content of the particles can be easily controlled by a subsequent partial drying step. A mixture of Soy Protein Isolate and particles was sheared in the Couette Cell. Controlled release of the gluten from the alginate particles was not achieved properly by temperature or shear. The controlled release of the gluten was achieved at the processing conditions only with κ-carrageenan. Some fibrilization was observed in the sheared product, but the macrostructure was not yet well developed. However, an optimization of the shearing process for the use of the particles may lead to an improved structure for the meat analogs.
Original languageEnglish
Article numbere12534
Number of pages9
JournalJournal of Food Process Engineering
Volume40
Issue number5
DOIs
Publication statusPublished - 2017

Fingerprint

Dive into the research topics of 'Immobilization of gluten in spherical matrices of food-grade hydrogels'. Together they form a unique fingerprint.

Cite this