TY - JOUR
T1 - Implementation of SNS thermometers into molecular devices for cryogenic thermoelectric experiments
AU - Volosheniuk, Serhii
AU - Bouwmeester, Damian
AU - Hsu, Chunwei
AU - Van Der Zant, H. S.J.
AU - Gehring, Pascal
N1 - Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
PY - 2023
Y1 - 2023
N2 - Thermocurrent flowing through a single-molecule device contains valuable information about the quantum properties of the molecular structure and, in particular, on its electronic and phononic excitation spectra and entropy. Furthermore, accessing the thermoelectric heat-to-charge conversion efficiency experimentally can help to select suitable molecules for future energy conversion devices, which - predicted by theoretical studies - could reach unprecedented efficiencies. However, one of the major challenges in quantifying thermocurrents in nanoscale devices is to determine the exact temperature bias applied to the junction. In this work, we have incorporated a superconductor-normal metal-superconductor Josephson junction thermometer into a single-molecule device. The critical current of the Josephson junction depends accurately on minute changes in the electronic temperature in a wide temperature range from 100 mK to 1.6 K. Thus, we present a device architecture which can enable thermoelectric experiments on single molecules down to millikelvin temperatures with high precision.
AB - Thermocurrent flowing through a single-molecule device contains valuable information about the quantum properties of the molecular structure and, in particular, on its electronic and phononic excitation spectra and entropy. Furthermore, accessing the thermoelectric heat-to-charge conversion efficiency experimentally can help to select suitable molecules for future energy conversion devices, which - predicted by theoretical studies - could reach unprecedented efficiencies. However, one of the major challenges in quantifying thermocurrents in nanoscale devices is to determine the exact temperature bias applied to the junction. In this work, we have incorporated a superconductor-normal metal-superconductor Josephson junction thermometer into a single-molecule device. The critical current of the Josephson junction depends accurately on minute changes in the electronic temperature in a wide temperature range from 100 mK to 1.6 K. Thus, we present a device architecture which can enable thermoelectric experiments on single molecules down to millikelvin temperatures with high precision.
UR - http://www.scopus.com/inward/record.url?scp=85149811306&partnerID=8YFLogxK
U2 - 10.1063/5.0137392
DO - 10.1063/5.0137392
M3 - Article
AN - SCOPUS:85149811306
SN - 0003-6951
VL - 122
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 10
M1 - 103501
ER -