TY - GEN
T1 - Implications of finite clock transition time for LPTV circuit analysis
AU - Weinreich, Stephen
AU - Muratore, Dante
AU - Chae, Youngcheol
AU - McKay, Thomas
AU - Murmann, Boris
PY - 2020
Y1 - 2020
N2 - Modeling linear periodically time-varying (LPTV) circuits is challenging due to the presence of frequency translation. Many approaches have been proposed that simplify the analysis and provide intuition into the operation of these circuits. It is critical to select the proper model when designing LPTV systems: too complex, and intuition is lost; too simple, and numerical accuracy degrades. This work shows how a conversion matrix-based model can be used for mixer-first receivers with complex feedback in the presence of finite switch transitions. This model accurately predicts S11 below -10 dB for all tested transition times, in contrast with prior models, which are shown to be invalid with transitions beyond 2% of the clock period. As a design tool, this approach models gain, harmonic rejection ratio, and noise figure within 0.1 dB of simulation with switch transitions even at 5% of the clock period.
AB - Modeling linear periodically time-varying (LPTV) circuits is challenging due to the presence of frequency translation. Many approaches have been proposed that simplify the analysis and provide intuition into the operation of these circuits. It is critical to select the proper model when designing LPTV systems: too complex, and intuition is lost; too simple, and numerical accuracy degrades. This work shows how a conversion matrix-based model can be used for mixer-first receivers with complex feedback in the presence of finite switch transitions. This model accurately predicts S11 below -10 dB for all tested transition times, in contrast with prior models, which are shown to be invalid with transitions beyond 2% of the clock period. As a design tool, this approach models gain, harmonic rejection ratio, and noise figure within 0.1 dB of simulation with switch transitions even at 5% of the clock period.
UR - http://www.scopus.com/inward/record.url?scp=85109260187&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85109260187
T3 - Proceedings - IEEE International Symposium on Circuits and Systems
BT - 2020 IEEE International Symposium on Circuits and Systems, ISCAS 2020 - Proceedings
PB - IEEE
T2 - 52nd IEEE International Symposium on Circuits and Systems, ISCAS 2020
Y2 - 10 October 2020 through 21 October 2020
ER -